الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطنى للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة: 04 سا و 30 د

دورة: 2020

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأوّل: (04 نقاط)

. $f(x) = \frac{4x+4}{9-x}$: بـ [1;4] الدالة العددية f معرّفة على المجال

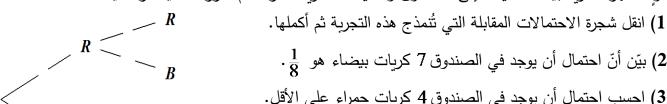
أ. ادرس اتّجاه تغيّر الدالة f على المجال [1;4].

 $f(x) \in [1;4]$ فإن: [1;4] فإن: [1;4] فإن: عدد حقيقي x من المجال وأيا:

 $u_{n+1}=f(u_n)$: $u_n=1$ عدد طبيعي $u_n=1$ عدد $u_n=1$ المتتالية العددية $u_n=1$ معرّفة بحدها الأول $u_n=1$ حيث: $u_n=1$ $1 < u_n < 4$: n عدد طبیعی أنّه من أجل كل عدد طبیعی أنّه من أجل كل عدد طبیعی

 \boldsymbol{u}_n ادرس اتجاه تغيّر المتتالية (u_n) و استنتج أنّها متقاربة.

 $v_n = \frac{u_n - 1}{u_n - 4}$: المتتالية العددية (v_n) معرّفة من أجل كل عدد طبيعي (v_n) معرّفة من أجل


. v_0 هندسية يُطلب تعيين أساسها وحدّها الأول v_n . أ . برهن أنّ المتتالية v_n

. $\lim_{n} u_n$ بدلالة u_n بدلالة u_n ، ثمّ استنتج الحد العام u_n بدلالة u_n واحسب v_n

.n بدلالة $.S_n = v_0 + 8v_1 + 8^2v_2 + ... + 8^nv_n$ بدلالة (4 التمرين الثاني: (04 نقاط)

صندوق به 5 كريات بيضاء و 3 كريات حمراء (كل الكريات متماثلة لا نفرق بينها باللمس).

نسحب من الصندوق كرية واحدة حيث: إذا ظهرت كرية حمراء نُعيدها إلى الصندوق ونُضيف له كرية بيضاء وإذا ظهرت كرية بيضاء نُعيدها إلى الصندوق ونُضيف له كرية حمراء، ثم نُكرّر العملية مرّة ثانية.

3) احسب احتمال أن يوجد في الصندوق 4 كربات حمراء على الأقل.

ليكن X المتغير العشوائي الذي يأخذ كقيمة عدد الكريات البيضاء الموجودة Xفي الصندوق بعد العملية الثانية.

أ . برّر أنّ قيم المتغير العشوائي X هي: 5، 6 و 7.

 $oldsymbol{\mathcal{E}}$ ب. عرّف قانون الاحتمال للمتغير العشوائي X ، ثمّ احسب E(X) أمله الرياضياتي.

اختبار في مادة: الرياضيات \ الشعبة: رياضيات \بكالوريا 2020

التمرين الثالث: (05 نقاط)

ليكن n عددا طبيعيا أكبر تماما من 1.

c=3n+2 و b=6n+1 ، a=4n+1 : نعتبر الأعداد الطبيعية a و b ، a و b ، a

- أثبت أنّ العددين a و b أوليان فيما بينهما.
- \cdot c و α نسمى lpha القاسم المشترك الأكبر للعددين lpha

 $\alpha=5$: يقسم من الأعداد الطبيعية من يكون من يكون من أثبت أن α

- . bc و a نسمي eta القاسم المشترك الأكبر للعددين eta
 - . $oldsymbol{eta}$. أثبت أنّ lpha يقسم
- $oldsymbol{lpha}=oldsymbol{eta}$: أثبت أنّ العددين $oldsymbol{eta}$ و $oldsymbol{b}$ أوليان فيما بينهما ثمّ استنتج أنّ
- $A = 18n^3 3n^2 13n 2$ و $A = 4n^2 3n 1$ و A = 2 و $A = 4n^2 3n 1$
 - . (n-1) . بيّن أنّ كلا من العددين A و B مضاعف للعدد الطبيعي

 $(bc = 18n^2 + 15n + 2 : نضع: d = PGCD(A; B)$ عبّر حسب قيم α عن d بدلالة d عبّر حسب قيم d عبّر حسب قيم d التمرين الرابع: d نقاط)

- $.h(x) = x(e^x + 1)$ و $g(x) = -2e^x$ الدّالتان العدديتان g و $g(x) = x(e^x + 1)$ على المجال $g(x) = -2e^x$ على المجال $g(x) = x(e^x + 1)$ و g(x) على المجال $g(x) = x(e^x + 1)$ و g(x) على المجال g(x) على المحال g(x) المحال g(x) على المحال g(x) على
 - . $f(x) = (x-3)e^x + \frac{1}{2}x^2$ بـ : $-\infty$; 0] الدالة العددية f معرّفة على المجال [II
 - $\left(C_{f}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{f}\right)$
 - - . f احسب f(x) و f(x) و f(x) احسب (2
 - -1.5 < lpha < -1.4: ثمّ تَحقّق أنّ f(x) = 0 تقبل حلا وحيدا lpha في المجال α المعادلة α تقبل حلا وحيدا α
 - .]- ∞ ; 0] هو التمثيل البياني للدالة: $x\mapsto \frac{1}{2}x^2$ على المجال (P) (4
 - أ. احسب $\lim_{x \to -\infty} \left[f(x) \frac{1}{2} x^2 \right]$ أ. احسب
 - (C_f) و (P) ادرس الوضع النسبي للمنحنيين
 - $[-\infty;0]$ على المجال (P) ثم المنحنى المخال على المجال أيث
 - $[-\infty;0]$ في $|f(x)|=e^m$ عدد حلول المعادلة: $|f(x)|=e^m$ في الكن وحسب قيم عدد حلول المعادلة:

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 نقاط)

- . حيث x و y عددان صحيحان. (x;y) حيث x دات المجهول (x;y) دات المجهول عددان صحيحان.
- أ. ادرس تبعا لقيم العدد الطبيعي n باقي القسمة الإقليدية للعدد الطبيعي n على 7.

 μ . ادرس تبعا لقيم العدد الطبيعي n باقي القسمة الإقليدية للعدد الطبيعي n على n

- $.14 \times 4^n + 11 \times 9^n 4 \equiv 0$ [77] عيّن الأعداد الطبيعية n بحيث يكون: (3
- $S_n = u_1 + u_2 + u_3 + ... + u_{15n}$ و $u_n = 3 \times 4^n + 4 \times 9^n$ نضع: $u_n = 3 \times 4^n + 4 \times 9^n$ و $u_n = 3 \times 4^n + 4 \times 9^n$ فير معدوم، نضع: $u_n = 3 \times 4^n + 4 \times 9^n$ و $u_n = 3 \times 4^n + 4 \times 9^n$ فير معدوم، نضع: $u_n = 3 \times 4^n + 4 \times 9^n$ و $u_n = 3 \times$

 S_n أثبت أنّ S_n مضاعف للعدد 77.

التمرين الثانى: (04 نقاط)

 $(n \ge 2)$ عدد طبیعی و $n \ge n$ عدد n عدد طبیعی و $n \ge n$

 $\frac{\pi}{3}$ و $\frac{\pi}{2}$ و كريات حمراء تحمل الأعداد $\frac{\pi}{2}$ ، $\frac{\pi}{2}$ ، $\frac{\pi}{3}$ ، $\frac{\pi}{2}$ ، $\frac{\pi}{2}$ الصندوق.

اً . احسب احتمال كل من A و B حيث:

اللون" A: "سحب كريتين من نفس اللون" و B: "سحب كريتين تحملان نفس العدد علما أنهما من نفس اللون" A

 $P(A) = \frac{17}{55}$ يكون: n حتّى يكون: ب

. نفرض في ما يلي: n=5 و نسمي α و β العددين الظاهرين على الكريتين المسحوبتين (2

 $\cos(lpha)\cos(eta)$:نعتبر X المتغیّر العشوائي الذي یرفق بکل نتیجة سحب العدد

 $\cdot 1$ ، $\frac{1}{4}$ ، $\cdot 0$ ، $-\frac{1}{2}$: هي: X هيان المتغيّر العشوائي ا

 $P(X=0) = \frac{27}{55}$ بيّن أنّ:

 $oldsymbol{\mathcal{E}}(X)$ ج. عيّن قانون احتمال المتغيّر العشوائي X واحسب أمله الرياضياتي

التمرين الثالث: (05 نقاط)

المتتاليتان العدديتان (u_n) و (u_n) معرفتان على \mathbb{N} بـ:

(عدد حقيقي)
$$\begin{cases} v_0=3\\ v_{n+1}=3\alpha v_n+\left(1-3\alpha\right)u_n \end{cases} \qquad \begin{cases} u_0=-1\\ u_{n+1}=3\alpha u_n+\left(1-3\alpha\right)v_n \end{cases}$$
 المتتالية العددية $\begin{pmatrix} w_n \end{pmatrix}$ معرّفة على \mathbb{N} ب

اختبار في مادة: الرياضيات \ الشعبة: رياضيات \بكالوريا 2020

lpha أ . احسب w_0 ثمّ احسب السب السب w_0

 \cdot . (6lpha-1) متتالیة هندسیة أساسها (w_n) بیّن أنّ

 $\frac{1}{6} < \alpha < \frac{1}{3}$:نفرض في كلّ ما يلي

أ. أثبت أنّ المتتالية $ig(u_nig)$ متزايدة تماما و أنّ $ig(v_nig)$ متناقصة تماما.

 ℓ استنتج أنّ (u_n) و (u_n) متقاربتان نحو نفس النهاية ℓ

. ℓ قيمة واستنتج قيمة $u_n + v_n = 2$: n عدد طبيعي عدد طبيعي (3

 $S = u_0 + u_1 + \dots + u_{2020}$: حيث $S = u_0 + u_1 + \dots + u_{2020}$ احسب بدلالة α

التمرين الرابع: (07 نقاط)

 $f(x) = \ln\left(\sqrt{9x^2 + 1} + 3x\right)$ بـ: $\Re\left(x\right) = \ln\left(\sqrt{9x^2 + 1} + 3x\right)$ الدالة العددية

 $.\left(O;\overrightarrow{i},\overrightarrow{j}\right)$ المنحنى البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس C_f

 $\lim_{x \to -\infty} f(x) = -\infty$: ثمّ بيّن أنّ $\lim_{x \to +\infty} f(x)$ أ. احسب

 $f'(x) = \frac{3}{\sqrt{9x^2 + 1}}$ الدينا: x عدد حقيقي عدد عقيقي الدينا:

ج. استنتج اتجاه تغيّر الدالة f ثمّ شكّل جدول تغيّراتها.

g(x)=f(x)-x نعتبر الدالَّة g المعرّفة على المجال g(x)=0 كما يلي: g(x)=f(x)

 $\lim_{x \to +\infty} g(x) = -\infty$ أنّ بيّن أنّ

 $g'(x) = \frac{-9x^2 + 8}{\left(\sqrt{9x^2 + 1}\right)\left(3 + \sqrt{9x^2 + 1}\right)} : \left[0; +\infty\right[$ بين أنّه من أجل كل عدد حقيقي x من المجال x من المجال x

 $(g\left(\frac{2\sqrt{2}}{3}\right) \approx 0.8) \approx 0.8$ ادرس اتجاه تغیّر الدالة g على المجال g على المجال أثم شكّل جدول تغیّراتها.

 $2.83 < \alpha < 2.84$: ثمّ تَحقّق أنّ : $2\sqrt{2}$: ثمّ تَحقّق أنّ : $2\sqrt{3}$: بيّن أنّ المعادلة g(x) = 0 تقبل حلا وحيدا α في المجال g(x) = 0 ثمّ تَحقّق أنّ : g(x) = 0 . استنتج إشارة g(x) على g(x) على أ0;+ ∞ [على أ0;+ ∞] .

 $[0;+\infty[$ المجال على المستقيم (Δ) في المعادلة y=x و المنحنى المجال على المجال y=x

4) نعتبر الدالة k المعرّفة على $[0;+\infty]$ ب $[0;+\infty]$ ب $[0;+\infty]$ و ليكن (γ) منحنيها البياني في المعلم السابق. أ . بيّن أنّ (γ) هو صورة منحنى الدالة: $x\mapsto \ln x$ بتحويل نقطى بسيط يطلب تعيينه.

بيانيا. النتيجة بيانيا. $\lim_{x \to +\infty} [f(x)-k(x)]$ بيانيا.

أ . بيّن الدالة f فردية.

انتهى الموضوع الثاني

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): رياضيات/ بكالوريا 2020

العلامة		عناصر الإجابة (الموضوع الأوّل)						
مجموعة	مجزأة	عناصر الإجاب (الموضوع الاول)						
	,	التمرين الأول: (04 نقاط)						
0.75	2×0.25	. [1;4] متزایدة تمامًا علی $f'(x) = \frac{40}{(9-x)^2}$ الدینا: $f(x) = \frac{40}{(9-x)^2}$						
0.75	0.25	$f(x) \in [f(1); f(4)]$ يكون $x \in [1;4]$ ب. من أجل:						
4.05	2×0.25	2) أ. البرهان بالتراجع.						
1.25	2×0.25	. لدينا : $u_n = \frac{(u_n - 1)(u_n - 4)}{9 - u_n}$ ونجد أنّ u_n متناقصة تمامًا						
	0.25	الاستنتاج: (u_n) متناقصة تمامًا و محدودة من الأسفل فهي متقاربة.						
1.25	2×0.25	. $v_0 = -\frac{1}{2}$ ومنه (v_n) هندسية أساسها $\frac{5}{8}$ و $v_{n+1} = \frac{5}{8}$ هندسية أساسها (3)						
1,20	2×0.25	$\cdot u_n = rac{4 \left(rac{5}{8} ight)^n + 2}{\left(rac{5}{8} ight)^n + 2}$ ' $v_n = rac{-1}{2} \left(rac{5}{8} ight)^n$: u_n عبارة v_n و عبارة v_n						
	0.25	$\lim_{n \to +\infty} u_n = 1 \qquad :$						
0.75	0.75	$S_n = \frac{-1}{8} (5^{n+1} - 1)$ $: \div \cdot (4)$						
		التّمرين الثاني: (04 نقاط)						
1.25	0.25x5	$R \sim \frac{\frac{3}{9}}{\frac{6}{9}} \sim R$: شجرة الاحتمالات: $R \sim \frac{\frac{3}{9}}{\frac{6}{9}} \sim B$: $\frac{3}{8} \sim R \sim \frac{\frac{3}{9}}{\frac{5}{9}} \sim R$						
0.5	0.5	$\frac{3}{2} \times \frac{3}{2} = \frac{1}{2}$ احتمال أن يوجد في الصّندوق 7 كريات بيضاء: $\frac{3}{2} \times \frac{3}{2} = \frac{1}{2}$						
0.75	0.75	$\frac{8}{1-1} = \frac{8}{8} = \frac{8}{8}$ احتمال أن يوجد في الصّندوق 4 كريات حمراء على الأقل: $\frac{7}{8} = \frac{1}{8} = 1$						
	0.5	4) أ . تبرير أنّ قيّم المتغير العشوائي X هي: 5 ، 6 و 7						
1.50	0.75	$\begin{bmatrix} x_i & 5 & 6 & 7 \end{bmatrix}$						
	0.25	$P(X=x_i) \begin{vmatrix} 25 \\ 72 \end{vmatrix} \begin{vmatrix} 38 \\ 72 \end{vmatrix} \begin{vmatrix} 9 \\ 72 \end{vmatrix}$ $E(X) = \frac{52}{9}$						
		التّمرين الثّالث: (05 نقاط)						
0.75	0.75	لدينا: $a = 3a - 2b = 1$ ، إذن حسب بيزو a و b أوليان فيما بينهما						
1 5	0.75	$\cdot \;\; lpha (4c-3a)$ ومنه: $(\;\; lpha c \;\;)$ لاينا: $(\;\; lpha c \;\;)$ ومنه: $(\;\; lpha c \;\;)$						
1.5	0.75	$k\in\mathbb{N}$ ، $n=5k+1$ ومنه $n\equiv 1$ ومنه $n\equiv 1$ ومنه $\alpha\equiv 0$ ومنه $\alpha=5$						

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): رياضيات/ بكالوريا 2020

العلامة		(t "Ét.					
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)					
		\cdot β بقسم $lpha$. إثبات أنّ $lpha$ يقسم $lpha$					
		lpha etaلدينا $lpha c$ ومنه $lpha a$ ومنه $lpha a$ وبالتّالي $lpha a$ أي $lpha a$					
	0.5	b و b أوليان فيما بينهما: نفرض أنّ b قاسم مشترك لـ eta و b					
1.5	0.5	$d=1$ ومنه $\left(egin{array}{c c} d & a & a & b \end{array} ight)$ ومنه $\left(egin{array}{c c} d & a & b \end{array} ight)$ وبالتّالي $\left(egin{array}{c c} d & b & a \end{array} ight)$					
1.5		ملاحظة : يمكن استعمال مبرهنة بيزو					
		: lpha = eta : استنتاج أنّ					
	0.5	etaig lpha و کام $ig eta$					
		$lpha=eta$ معناه $lpha\left eta ight.$ معناه $lpha\left eta ight.$					
	0.5	(n-1) و $A=(n-1)(4n+1)$. لدينا : $A=(n-1)(4n+1)$ و $A=(n-1)(4n+1)$					
1.25		d = (n-1)PGCD(a,bc) ومنه $d = PGCD(A,B)$ ب. لدينا					
	0.25x3	ومنه $d = (n-1)\beta = (n-1)\alpha$ وعلیه					
		$d=5n-5$: $\alpha=5$ من أجل $d=n-1$: $\alpha=1$ من أجل					
		التّمرين الرابع: (07 نقاط)					
0.5	0.25×2	$g(x) < 0$ و $h(x) \le 0 : x \in]-\infty; 0$ من أجل [1] من أجل					
	0.5+0.25	$: \left] - \infty ; 0 \right]$ أ. من أجل كل x من $\left[0 ; 0 \right]$					
1.25		$f'(x) = x(e^x + 1) + (-2e^x) = h(x) + g(x)$					
	0.5	$[-\infty;0]$ ب. f متناقصة تمامًا على المجال					
1	0.25×2	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (xe^x - 3e^x + \frac{1}{2}x^2) = +\infty \ \ f(0) = -3 \ \ \text{ign} $ (2)					
1	0.5	x→-∞ 2 جدول التّغيرات 2					
	0.77	$[-3;+\infty[$ مستمرة ومتناقصة تمامًا على المجال $[0;\infty-[$ وتأخذ قيمها في $[-3;+\infty[$					
1	0.75	ومنه $f(x)=0$ نقبل حلا وحيدا $lpha$ في $f(x)=0$.					
	0.25	$f\left(-1,4 ight)\simeq -0.105$ ، $f\left(-1,5 ight)\simeq 0.121$: $lpha\in\left]-1,5;-1,4\right[$ النّحقق أن					
	0.5×2	$-\infty$ بجوار $\left(C_f\right)$ ، نجد: $\left(C_f\right)$ ، بخوار ، $\lim_{x \to -\infty} (f(x) - \frac{1}{2}x^2) = 0$ ، نجد: $\left(C_f\right)$					
1.75		$f(x) - \frac{1}{2}x^2 = (x-3)e^x :]-\infty ; 0]$ ب. من أجل كل x من أجل كل					
	0.5+0.25	$\left]-\infty \; ; \; 0 \; ight]$ ومنه $\left(P ight)$ ويالتالي $\left(C_f ight)$ أسفل أو المجال $\left(C_f ight)$					

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): رياضيات/ بكالوريا 2020

العلامة		(t-\$t(c - : t()				
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)				
0.75	0.25	ج. إنشاء (C_f) و (P) انشاء (C_f) به انشاء (C_f)				
0.75	0.25×3	$]-\infty$; 0 المناقشة البيانية وحسب قيم m عدد حلول المعادلة: $m \le \ln 3$ في $m \le \ln 3$ من أجل $m \le \ln 3$ المعادلة تقبل حلّين مختلفين. $m > \ln 3$ من أجل $m > \ln 3$ المعادلة تقبل حلّ واحد				

العلامة		/ •1 ² to - • • • • • • • • • • • • • • • • • •					
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)					
		التمرين الأول: (04 نقاط)					
1	1	$k \in Z$ $(x; y) = (5k - 1; 3k - 1)$ (1					
1	0.5	7 على 7 على 7 أ) بواقي القسمة الاقليدية للعدد n على $3k$ $3k+1$ $3k+2$ $(k \in \mathbb{N})$ 1 يواقي القسمة الاقليدية للعدد 4^n على 1 على 1 على 1 بواقي القسمة الاقليدية للعدد 4^n على 1 على 1					
	0.5	n $5k$ $5k+1$ $5k+2$ $5k+3$ $5k+4$ $5k+3$ $5k+4$ 1					
1	0.25×3	(3) بما أن 7 و 11 أوليان فيما بينهما فإنّ: $\begin{cases} 9^n \equiv 1 \begin{bmatrix} 7 \end{bmatrix} \\ 4^n \equiv 5 \begin{bmatrix} 7 \end{bmatrix} \end{cases} \begin{cases} 11 \times 9^n - 4 \equiv 0 \begin{bmatrix} 7 \end{bmatrix} \\ 14 \times 4^n - 4 \equiv 0 \begin{bmatrix} 11 \end{bmatrix} \end{cases} \begin{cases} 14 \times 4^n + 11 \times 9^n - 4 \equiv 0 \begin{bmatrix} 7 \end{bmatrix} \\ 14 \times 4^n + 11 \times 9^n - 4 \equiv 0 \begin{bmatrix} 11 \end{bmatrix} \end{cases}$					
	0.25	(2) أي: $n=3lpha=5eta=3$ ومنه $n=3lpha=5eta=3$ عددان طبيعيان $n=3lpha=5eta+2$ ومنه $n=15p-3$ ومنه $n=15p-3$					
	0.5	$S_n = 4(4^{15n}-1) + \frac{9}{2}(9^{15n}-1)$. 1 (4					
1	0.5	.77 مضاعف للعدد $.77$ مضاعف للعدد $.77$ مضاعف $.77$ مضاعف $.77$					
		$\left\{ \begin{pmatrix} 1 \end{pmatrix}^{5n} - 1 \equiv 0 \begin{bmatrix} 7 \end{bmatrix} \\ \begin{pmatrix} 1 \end{pmatrix}^{5n} - 1 \equiv 0 \begin{bmatrix} 7 \end{bmatrix} \\ \begin{pmatrix} 1 \end{pmatrix}^{5n} - 1 \equiv 0 \begin{bmatrix} 7 \end{bmatrix} \\ \begin{pmatrix} 1 \end{pmatrix}^{3n} - 1 \equiv 0 \begin{bmatrix} 11 \end{bmatrix} \right\}$ محققة دوما $\left\{ \begin{pmatrix} 9^5 \end{pmatrix}^{3n} - 1 \equiv 0 \begin{bmatrix} 11 \end{bmatrix} \right\}$					
	1	التّمرين الثاني: (04 نقاط)					
1.5	0.5×2	$P(B) = \frac{n^2 - n + 2}{n^2 - n + 14} \cdot P(A) = \frac{n^2 - n + 14}{(n+5)(n+6)} \cdot f(1)$					
	0.5	$n=5$ يعني $P(A)=rac{17}{55}$.ب					
1	0.5 0.5	$1 \cdot \frac{1}{4} \cdot 0 \cdot -\frac{1}{2} X$ المتغيّر العشوائي العش					

العلامة				/ 11		ti)	al'a		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)							
1.5	1	r	<u>-1</u>	0	1/4	1	X قانون احتمال جـ. قانون		
		$p(X=x_i)$							
1.5		P(X-M)	12 55	$\frac{27}{55}$	$\frac{1}{55}$	15 55	4 > 27		
	0.5						$E(X) = \frac{37}{220}$		
	رين الثالث: (05 نقاط)						التّمرين الثالث: (05 نقاط)		
	2×0.25	$w_1 = 4(6\alpha - 1)$, $w_0 = 4$, 1							
	0.5	$\cdot (6 \alpha - 1)$ ب. $w_{n+1} = (6 \alpha - 1)$ متتالیة هندسیة أساسها (w_n) : $w_{n+1} = (6 \alpha - 1)$							
2	0.5	$w_n = 4(6\alpha - 1)^n \Rightarrow$							
	0.5	$0 ومنه -1<6lpha-1\leq 1 يعني \lim_{n o +\infty}w_n=0$							
	0.5		. متزایدة تمامًا u_n ومنه المتتالیة u_n متزایدة تمامًا $u_{n+1}-u_n=-(3\alpha-1)w_n$. أ						
	0.5		ومنه المتتالية $\begin{pmatrix} v_n \end{pmatrix}$ متناقصة تمامًا. $v_{n+1} - v_n = (3\alpha - 1)w_n$						
1.75	0.5	$\lim_{n\to+\infty} (v_n-u_n)=0$ و المتتالية (v_n) متناقصة تمامًا و (u_n) متناقصة تمامًا و (u_n)							
	0.25	$n o +\infty$ فإنهما متجاورتان وبالتالي متقاربتان نحو نفس النّهاية ℓ .							
	0.5	$v_{n+1} - v_n = (3\alpha - 1)w_n$ و $u_{n+1} - u_n = -(3\alpha - 1)w_n$ الدينا $u_{n+1} + v_{n+1} = u_n + v_n = u_0 + v_0 = 2$							
0.75									
	$\ell=1$ ومنه $\lim_{n\to+\infty} \left(u_n+v_n\right)=$						$(u_n + v_n) = 2$: ℓ استنتاج قیمة		
0.5	0.5	$S = 2021 - \frac{(6\alpha - 1)^{2021} - 1}{3\alpha - 1}$ نجد: (4							
	1						التّمرين الرابع: (07 نقاط)		
	2×0.25	(مع النّبرير) . $\lim_{x \to +\infty} f(x) = +\infty$. أ (1							
1.75	0.25	$\lim_{x \to -\infty} f(x) = -\infty$: اثبات أنّ							
	0.5	. $f'(x) = \frac{3}{\sqrt{9x^2 + 1}} : \mathbb{R}$ من أجل كل x من أجل كل							
	0.25	$\sqrt{9x^2+1}$. \mathbb{R} . x من أجل كل x من $f'(x)>0:\mathbb{R}$ ، إذن f متزايدة تمامًا على							
	0.25	ج. من الجن ك x من الحالة f . y y y y y y y y منزايده نماها على الحال x y جدول تَغيّرات الدالة x							
	0.5	$\lim_{x \to +\infty} g(x) = -\infty$ نبیان اُنّ زرگ از کار نبیان اُنّ زرگ از کار							
1	0.5	$g'(x) = \frac{-9x^2 + 8}{\left(\sqrt{9x^2 + 1}\right)\left(3 + \sqrt{9x^2 + 1}\right)}$ ، $x \ge 0$ ب. تبیان أنّ من أجل كل $x \ge 0$							

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): رياضيات/ بكالوريا 2020

العلامة		/ n. ž. h. h. h. h.							
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)							
0.75	0.25	x 0 $\frac{2\sqrt{2}}{3}$ $+\infty$ $g'(x)$ $+$ 0 $ (-9x^2+8)$ هي من إشارة $g(x)$ $+$ 0 $+$ 0 $+$							
	0.25	$\left[rac{2\sqrt{2}}{3};+\infty ight]$ و متزايدة تمامًا على $\left[0;rac{2\sqrt{2}}{3} ight]$ و متزايدة تمامًا على g							
	0.25	جدول تغيّرات الدّالة g							
	0.5	$\left[-\infty;g(\frac{2\sqrt{2}}{3})\right]$ اً. g مستمرة ورتيبة تمامًا على g $+\infty$ وتأخذ قيمها في المجال g . f							
	0.25	$g\left(0.83 ight)pprox0.001$ و $g\left(0.84 ight)pprox-0.005$ $:2,83 و .$							
1.5	0.25	x 0 α + ∞ : $g(x)$ ب. استنتاج إشارة $g(x)$ ب.							
1.3		- () () ;							
		$]0;\alpha[$							
	0.5	$]lpha;+\infty[$ على المجال على المجال (C_f) على المجال $lpha$ و (Δ) متقاطعان في نقطتين فاصلتاهما (C_f)							
		$x\mapsto \ln x$ الدينا $k(x)=\ln 6+\ln x$ إذن (γ) هو صورة المنحني الممثل للدّالة $k(x)=\ln 6+\ln x$							
0.75	0.25	بالانسحاب الذي شعاعه $k(x) = 110 + 111 x$ هو صوره المتحتي الممثل للذاته $k(x) = 1110 + 111 x$ بالانسحاب الذي شعاعه $u(0; \ln 6)$.							
	2×0.25	(c,mc) بوار (c,mc) بجوار (c,mc) بجوار (c,mc) بجوار (c,mc) بجوار (c,mc) بجوار (c,mc) بجوار (c,mc)							
		f فردية. f فردية.							
		$[0;+\infty[$ ب. رسم كل من (γ) ،على المجال $[0;+\infty[$ و رسم (C_f) و (C_f) على المجال المجال .							
		استتتاج الرسم للمنحني $\left(C_f ight)$ على \mathbb{R} .							
	0.25	,							
	3×0.25								
1.25	0.25								
		-5 -4 -3 -2 -1 1 2 3 4 5 6 7							
		-3							
		3,							