

دورة: 2019

المدة: 04 سا و 30 د

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع على (03) صفحات (من الصفحة 1 من 6 إلى الصفحة 3 من 6)

التمرين الأول: (04 نقاط)

: كما يلى المعرّفتان على المعرّفتان على المعرّفتان على المتتاليتان العدديتان المعرّفتان على و (u_n)

- أثبت أنّ المتتالية (v_n) هندسية يطلب تعيين أساسها وحدها الأول.
 - n اکتب u_n بدلاله n ثم استنج (2
- $S_n = u_0 + u_1 + ... + u_n$: $S_n = u_0 + u_1 + ... + u_n$: (3)
- 4) أ) ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية لـ 7^n على 9.
- \mathbf{r} 1442 2019 +1962 1954 +1954 1962 على 9 للعدد 9 للعدد وباقي القسمة الإقليدية على 9 بالعدد 9 بالعدد 9 بالعدد 9 بالعدد بالعدد بالعدد 9 بالعدد 1442
 - $.6S_n 7u_n \equiv 0[9]$: n عدد طبیعی عدد أَجّل كلّ عدد أَبّ

التمرين الثاني: (04 نقاط)

توجد إجابة صحيحة واحدة من بين الأجوبة المقترحة في كل حالة من الحالات التالية. اختر الإجابة الصحيحة مبرّرا اختيارك.

يحتوي كيس على ثلاث كريّات بيضاء تحمل الأرقام 1, 2, 3 وكريّتين سوداوين تحملان الرقمين 1, 2.

(الكريّات لا نفرّق بينها عند اللمس) نسحب من الكيس 3 كريّات عشوائيا وفي آن واحد .

لمسحوبة. X المتغير العشوائي الذي يرفق بكل سحب عدد الكربّات السوداء المسحوبة.

$$\{0;1;2\}$$
 (ج. $\{0;2;3\}$ (ب. $\{1;2;3\}$) قيم المتغير العشوائي X هي: أ

$$E(X) = \frac{11}{10}$$
 (ج ، $E(X) = \frac{6}{5}$ (ب ، $E(X) = \frac{4}{5}$ (أ) لأمل الرياضياتي (2) و الأمل الرياضياتي (2) و الأمل الرياضياتي (3) و الأمل الرياضياتي (4) و الأمل الرياضياتي (4) و الأمل الرياضياتي (4) و الأمل الرياضياتي (5) و الأمل الرياضياتي (5) و الأمل الرياضياتي (6) و الأمل الرياضياتي (7) و الأمل الرياضياتي (7)

3) احتمال "الحصول على كريّة واحدة سوداء تحمل الرقم 1 من الكريّات المسحوبة"

4) احتمال" باقي قسمة مجموع مربّعات الأرقام التي تحملها الكريّات المسحوبة على 13 هو 1 "

$$\frac{1}{5}$$
 (\Rightarrow

$$\frac{1}{5}$$
 (\Rightarrow ' $\frac{3}{10}$ (\Rightarrow ' $\frac{2}{5}$ (†

$$\frac{2}{5}$$
 (1)

التمرين الثالث: (05 نقاط)

المستوي المركب منسوب إلى المعلم المتعامد والمتجانس B ، A ، O; \overrightarrow{u} , \overrightarrow{v} النّقط التي لاحقاتها على

.
$$z_C=rac{3}{2}+i\left(1+rac{\sqrt{3}}{2}
ight)$$
 و $z_B=2+i$ ، $z_A=1+i$:التَّرِتيب

- الدّائرة التي مركزها A وطول نصف قطرها Γ
 - (Γ) أي تحقّق أنّ النّقطة C من الدّائرة (1).
- A عيّن قيسا بالراديان للزّاوية $(\overline{AB}\;;\;\overline{AC}\;)$ ثم استنتج أنّ C صورة B بالدوران r الذي مركزه يطلب تعيين زاويته.
 - يت النّقطة M' دات اللاحقة z إلى النّقطة M' دات اللاحقة z' حيث: S (2

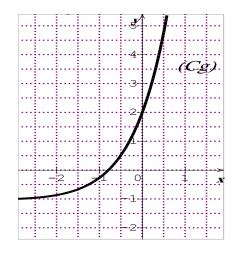
$$z' = \left(1 + i\sqrt{3}\right)z + \sqrt{3} - i\sqrt{3}$$

- أ) حدّد العناصر المميزة للتّشابه S .
- S عيّن Z_D لاحقة D صورة B بالتشابه
- 3) ماهى نسبة التّحاكي h الذي مركزه A حيث S=hor ؟ استنتج أنّ النقط h و C في استقامية.
 - $k \in \mathbb{R}^*_+$ مجموعة النقط M من المستوي التي لاحقتها $z = z_A + ke^{i\frac{\pi}{3}}$: معموعة (E) (4
 - . (E) من المجموعة (E) ثم حدّد طبيعة (E)

التمرين الرابع: (07 نقاط)

$$g(x) = (x+3)e^x - 1$$
 الدّالة المعرفة على \mathbb{R} كما يلى: $g(I)$

. و (C_{ϱ}) تمثیلها البیانی کما هو مبین فی الشکل


بقراءة بيانية

.
$$g\left(\frac{-1}{2}\right)$$
 و $g\left(-1\right)$ قد إشارة (أ

$$-1$$
 ; $\frac{-1}{2}$ | ستنتج وجود عدد حقیقي α وحید من المجال α وحید عدد $g(\alpha) = 0$ بحیث $g(\alpha) = 0$ ثم تحقّق أنّ

$$\mathbb{R}$$
 استنتج اشارة $g(x)$ على \mathbb{R} .

$$f(x) = (x+2)(e^x-1)$$
: بالدّالة المعرفة على $f(II)$

اختبار في مادة: الوياضيات // الشعبة: تقني رياضي // بكالوريا 2019

- $\cdot \left(O; \vec{i}, \vec{j} \right)$ تمثيلها البياني في المستوي المنسوب الى المعلم المتعامد والمتجانس $\left(C_f \right)$
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (1
- . f نم شكّل جدول تغيرات الدالـة f'(x) = g(x) ، x عدد حقيقي عدد حقيقي (2
- له. احسب المثالث الم
 - (Δ) و المستقيم النسبي المنحنى الوضع النسبي المنحنى (C_f)
 - (Δ) الموازي للمستقيم (C_f) مماس (T) معادلة لـ (Δ)
 - $(f(\alpha) \approx -0.7$ يعطى $]-\infty;1]$ على المجال المنحني (C_f) والمنحني (Δ) والمنحني (Δ) ارسم المستقيم
 - . \mathbb{R} على $f\left(x\right)-g\left(x\right)$ احسب (5
- لسابق. $h(x) = |x| \left(e^{|x|-2} 1\right) + 1$ كما يلي: $h(x) = |x| \left(e^{|x|-2} 1\right) + 1$ و $h(x) = |x| \left(e^{|x|-2} 1\right)$ كما يلي: $h(x) = |x| \left(e^{|x|-2} 1\right)$
 - .h(x) = f(x-2)+1 : فإنّ $[0;+\infty[$ من المجال x من أجل كل x من أجل كل x من المجال أيّات
 - -3;3] اشرح کیف یمکن رسم (C_h) انطلاقا من (C_f) ثم ارسم علی المجال المجال (C_h)

الموضوع الثانى

يحتوي الموضوع على (03) صفحات (من الصفحة 4 من 6 إلى الصفحة 6 من 6)

التمرين الأول: (04 نقاط)

- . نعتبر المعادلة ذات المجهول (x,y): (x,y): (x,y) عددان صحيحان. (1
 - رًا) تحقّق أنّ الثنائية (E) عدد طبيعي. عدد طبيعي. أي تحقّق أنّ الثنائية (E) عدد طبيعي.
 - \bullet استنتج أنّ العددين 3+n+2 و 3+n+1 أوليان فيما بينهما.
 - a نضع a=10n+3 و كيكن b=3n+5 و وليكن a=10n+3 نضع
 - d = 41 أو d = 1
 - $.n \equiv 12[41]$ فإنّ d = 41 كان أنّه إذا كان d = 41
 - $A = 6n^2 + 19n + 15$ و $A = 20n^2 + 36n + 9$ و (3
 - أ) بيّن أنّ العددين A و B يقبلان القسمة على 2n+3.
 - $\cdot B$ و حسب قيم n القاسم المشترك الأكبر للعددين n و A

التمرين الثاني: (04 نقاط)

يحتوي كيس على أربع كريات بيضاء تحمل الأرقام 1 ، 2 ، 3 ، 4 وثلاث كريات حمراء تحمل الأرقام 1 ، 2 ، 4 وكريتين سوداوين تحملان الرقمين 1 ، 2 (كل الكريات متشابهة لا نفرق بينها عند اللمس) .

نسحب عشوائيا وفي آن واحد ثلاث كريات من هذا الكيس.

- 1) احسب احتمال الحوادث التالية:
- أ) الحادثة A: "الحصول على كربة بيضاء واحدة ".
- $\boldsymbol{\psi}$) الحادثة \boldsymbol{B} : " الحصول على كريتين بيضاوين على الأكثر ".
- جـ) الحادثة C: " الحصول على ثلاث كريات تحمل أرقاما غير أولية ".
- 2) نعتبر المتغير العشوائي X الذي يرفق بكل عملية سحب عدد الكريات التي تحمل أرقاما أولية.
 - أ) عيّن قيم المتغير العشوائي X ، ثم عرّف قانون احتماله.
 - . $P(X^2-X\leq 0)$ بر) احسب (ب

التمرين الثالث: (05 نقاط)

- . $(2-2\sqrt{3})^2 = 16-8\sqrt{3}$: نحقّق أنّ (I
- $Z=-16\sqrt{3}-16i$: حيث على الشكل الجبري الجذرين التّربيعيين $L_{_{\! 2}}$ و $L_{_{\! 1}}$ للعدد المركّب كين على الشكل الجبري الجذرين التّربيعيين $L_{_{\! 2}}$

اختبار في مادة: الرياضيات // الشعبة: تقني رياضي // بكالوريا 2019

و C و B ، A انتقبر النقط $(O; \vec{u}, \vec{v})$ ، نعتبر النقط B ، A التي المركب المنسوب إلى المعلم المتعامد والمتجانس و $(D; \vec{u}, \vec{v})$

$$z_{\rm C} = -rac{1}{4}z_{
m A}$$
 و $z_{
m B} = rac{1}{2}iz_{
m A}$ ، $z_{
m A} = 4e^{irac{\pi}{3}} + 4e^{irac{5\pi}{6}}$ لاحقاتها

- . $z_{\rm A} = 4\sqrt{2}e^{i\frac{7\pi}{12}}$ اكتب $z_{\rm A}$ على الشكل الجبري ، ثمّ بيّن أن $z_{\rm A}$ على الشكل الجبري ، ثمّ بيّن
- $\sin\left(\frac{7\pi}{12}\right)$ و $\cos\left(\frac{7\pi}{12}\right)$ استنتج القيمتين المضبوطتين للعددين العقيقيين (2
 - . C التشابه المباشر الذي يحوّل A إلى B و يحوّل S (3

لتكن M' النقطة ذات اللاحقة z' صورة النقطة M ذات اللاّحقة z بالتّشابه z'

$$z' = \frac{1}{2}iz$$
 : أُنّ

- ب) حدّد العناصر المميزة للتشابه S.
- . $\{(A;2),(B;-2),(C;4)\}$ مرجح الجملة مرجح التقطة ذات اللّاحقة مرجح الجملة المرج

$$z_{\mathrm{G}}=2e^{irac{\pi}{3}}$$
: بيّن أنّ

ب) (A) مجموعة النقط M من المستوي ذات اللاحقة z بحيث:

$$\| \overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC} \| = 2\sqrt{2}$$

- حدّد طبيعة (E) وعناصرها المميّزة، ثم احسب محيط (E') صورة (E) بالتشابه

التمرين الرابع: (07 نقاط)

- $g(x) = (x+1)(x+e) e(x \ln x)$: بg(x) = 0 بالدالة المعرفة والمتزايدة تماما على $g(x) = (x+1)(x+e) e(x \ln x)$ بالدالة المعرفة والمتزايدة تماما على g(x) = 0 بالدالة المعرفة والمتزايدة المعرفة والمتزايدة المعرفة والمتزايدة المعرفة والمتزايدة المتزايدة ا
 - $f(x) = \ln(x+1) + \frac{e \ln x}{x+1}$:ب] $0 ; +\infty$ على الدالة المعرفة على $f(x) = \frac{1}{x+1}$

. $\left(O; \vec{i}\;, \vec{j}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f\right)$

$$\lim_{x \to +\infty} f(x) = +\infty$$
 ثم بیّن أنّ ، $\lim_{x \to \infty} f(x)$ احسب (أ (1

$$f'(x) = \frac{g(x)}{x(x+1)^2}$$
 : $]0; +\infty[$ من أَجَل كل x من أَجّل كل x من أَجّال من أَجّال كل x من أَجال كل x من أَجّال كل x من أَجال كل أَجّال كل أَجال كل أَجْال كل أَجْال

- ج) استنتج اتجاه تغیر الداله f ، ثم شکّل جدول تغیراتها .
- (\mathbf{C}_f) مماس معادلة لـ (\mathbf{T}) مماس معادلة النقطة ذات الفاصلة (2
- lpha المنحنى (C_f) يقطع حامل محور الفواصل في نقطة وحيدة A المنحنى أنّ المنحنى (10 يقطع حامل محور الفواصل في نقطة وحيدة $(0.7 < \alpha < 0.8)$

اختبار في مادة: الرياضيات // الشعبة: تقنى رياضى // بكالوريا 2019

- $[0;+\infty[$ التمثیل البیاني للدالة $x\mapsto \ln(x+1)$ علی المجال (Γ) (4
 - أ) احسب $\lim_{x\to +\infty} (f(x) \ln(x+1))$ ثم فسّر النتيجة بيانيا.
 - . (Γ) و (C_f) ادرس الوضع النسبي للمنحنيين
 - (C_f) أرسم المماس (T) و (T) ثم
- . حلين متمايزين $f(x) = \frac{1+e}{2}x-m$ وسيط حقيقي ، عين قيم m بحيث تقبل المعادلة m وسيط حقيقي ، عين قيم
 - . $\ln x < x+1$:]1;+ ∞ من المجال x من أجل كل غير (6
 - . $\ln 2 < f(x) < e + \ln(x+1)$: $]1;+\infty[$ من المجال x من أجل كل بيّن أنّه من أجل كل من المجال أ
- ب) تحقّق أنّه من أجل كل x من المجال $[1;+\infty]$ الدالة $x\mapsto (x+1)\ln(x+1)-x$ هي دالة أصلية للدالة $x\mapsto \ln(x+1)$.
 - ج) S مساحة الحيز المستوي المحدّد بالمنحنى C_f وحامل محور الفواصل والمستقيمين اللذين $x=e^2-1$ و x=e-1 .
 - . $(e^2-e)\ln 2 < S < e^3$: بيّن أنّ ، بيّن أن السؤال $oldsymbol{6}$ باستخدام جواب السؤال

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات / الشعب (ة): تقني رياضي / بكالوريا: 2019

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	عاصر الإجاب (الموصوع الأول)
		التمرين الأول: (04 نقاط)
	0.5+2× 0.25	v_0 اثبات أن (v_n) متتالية هندسية و حساب اثبات أن (v_n)
	0.5+2× 0.25	n كتابة v بدلالة n و استنتاج u_n بدلالة u
04	0.25	$S_n = u_0 + u_1 + \dots + u_n$: $S_n = u_0 + u_1 + \dots + u_n$
	01	4) أ) دراسة بواقي القسمة الإقليدية لـ 7^n على 9 .
	0.5	ب) باقي القسمة الإقليدية على 9 لـ $1442^{2019} + 1962^{1954} + 1954^{1962}$
	0.25	$6S_n - 7u_n \equiv 0$ [9] : n عدد طبیعي ج n اثبات انه من اجل کل عدد طبیعي
		التمرين الثاني: (04 نقاط)
	3 × 0.5	اً قيم المتغير العشوائي تنتمي إلى $\{0\;;\;1;\;2\}$
	0.5	2) مجموعة الامكانيات
04	4 × 0.25	$E(x) = \frac{6}{5}$: الأمل الرياضياتي $E(x)$ هو
	0.5	$\left(\frac{C_1^1.C_4^2}{C_5^3} = \frac{3}{5}\right)$ الاحتمال يساوي (3
	0.5	(عدد الحالات الملائمة للحادث هو 4) ومنه الاحتمال يساوي $\frac{2}{5}$
		التمرين الثالث: (04 نقاط)
	0.5	(Γ) أ) التحقق أن النقطة C من الدائرة C
	0.75	$(\overrightarrow{AB};\overrightarrow{AC})$ تعبين قيس بالراديان للزاوية $(\overrightarrow{AB};\overrightarrow{AC})$
	0.75	استنتاج أن C صورة B بالدوران r الذي مركزه A يطلب تعيين زاويته .
	0.5+2× 0.25	S أ) تعيين العناصر المميزة للتشابه S
04	0.5	$z_D = 2 + \left(1 + \sqrt{3}\right)i$ ، z_D نعیین (پ
	0.25	S=hor نسبته $S=hor$ التحاك h مركزه A حيث C ، A و D و D في إستقامية.
	0.25	(E) من المجموعة C من المجموعة (A
		(E) استنتاج طبيعة المجموعة
		التمرين الرابع: (08 نقاط)
1.75	2× 0.25	$g\left(-0.5 ight)$ ، $g\left(-1 ight)$ اشارة $g\left(-1 ight)$
	0.75	α وحيد من المجال -0.5 بحيث α وحيد من المجال -1 ; -0.5
		و التحقق من الحصر $g(\alpha) = 0$
	0.5	. $g(x)$ استنتاج اشارة .
	•	

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات //الشعب(ة): تقني رياضي// بكالوريا: 2019

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	2×0.5	II . $\lim_{x\to -\infty} f(x)$ و $\lim_{x\to +\infty} f(x)$ عساب (1
	2×1	f'(x) = g(x) : وثبات أن من اجل كل عدد حقيقي $f'(x) = g(x)$ عدد حقيقي f جدول تغير ات الدالـــة f
04.75	2×0.25	$\lim_{x \to -\infty} \left(f(x) + x \right)$ حساب المنحنى $\left(C_f \right)$ يقبل مستقيما مقاربا مائلا (Δ)
-	0.25	. (Δ) دراسة الوضعية النسبية للمنحنى (C_f) بالنسبة للمستقيم
-	0.5	(Δ) الموازي للمستقيم الحالة لـ (T) مماس الموازي المستقيم الح
-	0.5	(C_f) انشاء المستقيم (Δ) والمماس (T) و المنحني (4
0.75	0.75	. f عساب $f(x)-g(x)$ ثم استنتاج دالة أصلية للدالة f
	0.25	اً) إثبات أن الدالة h زوجيـة .
0.75	0.25	$h(x) = f(x-2)+1$: فإن $[0;+\infty[$ من x من اجل كل x من اجل كل واثبات انه من اجل كل
	0.25	$\left(C_f ight)$ انطلاقا من $\left(C_h ight)$ انطلاقا من
		$\left[-3;3 ight]$ في المجال $\left(C_h ight)$

العلامة		/ *1**ti			
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)			
		التمرين الأول: (04 نقاط)			
	1	التحقق أن $(6n+2,10n+3)$ حل للمعادلة ((E)) التحقق أن			
	1	$oldsymbol{+}$ استنتج أن $2+6n+2$ و $10n+3$ أوليان فيما بينهما			
04	0.75	$egin{aligned} egin{aligned} & & & & & \\ & & & & \\$			
	0.75	$n \equiv 12$ [41] فإن $d = 41$ فإن $d = 41$ أثبات أن إذا كان $d = 41$			
	0.25	3 و B يقبلان القسمة على $2n+3$ يقبلان القسمة على A (أ			
	0.25	n حسب قیم $p \gcd(A,B)$ (ب			
		التمرين الثاني: (04 نقاط)			
	1	1) مجموع الامكانيات			
	0.75	$\frac{C_4^1 \times C_5^2}{C_9^3} = \frac{10}{21}$ احتمال الحصول على كرة بيضاء واحدة فقط هو			
	0.5	$-\frac{C_4^3}{C_9^3} = \frac{20}{21}$ هو بيضاوين على الأكثر هو كرتين بيضاوين على الأكثر المحصول على كرتين بيضاوين على الأكثر المحصول المحصول على كرتين بيضاوين على كرتين المحصول			
	0.5				
04		$p(C) = \frac{C_4^3}{84} = \frac{1}{21}$ احتمال الحصول على ثلاث كريات تحمل أرقاما غير أولية			
	0.5	(2) أ) قيم المتغير العشوائي X هي قيم المجموعة $\{0,1,2,3\}$.			
	0.5	$\left(P(X=0) = \frac{4}{84}, P(X=1) = \frac{30}{84}, P(X=2) = \frac{40}{84}, P(X=3) = \frac{10}{84}\right)$ Bile of the property of t			
	0.25	$P(X^2 - X \le 0) = P(X = 0) + P(X = 1) = \frac{4}{84} + \frac{30}{84} = \frac{34}{84} ($			
	التمرين الثالث: (05 نقاط)				
	0.5	$(\mathbf{I}$ التحقق ان $(\mathbf{I} - 2\sqrt{3})^2 = 16 - 8\sqrt{3}$ التحقق ان التحقق			
	2×0.5	$L_2 = (2\sqrt{3} - 2) - i(2 + 2\sqrt{3})$. $L_1 = (2 - 2\sqrt{3}) + i(2 + 2\sqrt{3})$. $(-1)^2 + i(2 + 2\sqrt{3})$.			
	0.5	(II) $z_{A} = (2-2\sqrt{3}) + i(2+2\sqrt{3}) \cdot (5) \cdot (1)$			
03	0.5	$z_{A} = 4\sqrt{2}e^{i\left(\frac{\pi}{3} + \frac{\pi}{4}\right)} = (2 - 2\sqrt{3}) + i(2 + 2\sqrt{3})$			
	0.5	$\sin\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$ و $\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2} - \sqrt{6}}{4}$			

العلامة		/ *1**ti c . ** ti\
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		$\sim C$ تشابه مباشر الذي يحول $\sim A$ الى $\sim B$ و يحول $\sim S$ تشابه مباشر الذي يحول
	0.5	$z'=rac{1}{2}iz$: هي S العبارة المركبة للتشابه
	0.5	$O(0;0)$ العناصرالمميزة للتشابه S : نسبته $\frac{1}{2}$ و زاويته $\frac{\pi}{2}$ و مركزه
02		رجح الجملة المثقلة $\{(A;2),(B;-2),(C;4)\}$ اتكن G مرجح الجملة المثقلة $\{(A;2),(B;-2),(C;4)\}$
	0.5	$z_{ m G}=2e^{irac{\pi}{3}}$ ومنه $z_{ m G}=1+i\sqrt{3}$ (أ
		$ ext{MG} = \sqrt{2}$ تكافئ $\left\ \overrightarrow{\text{MA}} - \overrightarrow{\text{MB}} + 2\overrightarrow{\text{MC}} \right\ = 2\sqrt{2}$ (ب
	0.5	وطول نصف قطرها $\sqrt{2}$ ، محیط (E') هو $\pi\sqrt{2}$ وحدة الطول. (E)
		التمرين الرابع: (07 نقاط)
		$g(x) = (x+1)(x+e) - e(x \ln x)$ بـ: $g(x) = (x+1)(x+e) - e(x \ln x)$ بالدالة $g(x) = (x+1)(x+e) - e(x \ln x)$
	0.5+0.75	$g(x)>0$ ، فان $g(x)>0$ ، من أجل كل على المجال $g(x)>0$ ، فان $\lim_{x \longrightarrow \infty} g(x)=e$
06		$f(x) = \ln(x+1) + \frac{e \ln x}{x+1}$ بعتبر الدالة f المعرفة على $f(x) = 0; +\infty$ ب
	2×0.5	$\lim_{x \to +\infty} f(x) = +\infty$ ، تبیان ان $\lim_{x \to \infty} f(x) = -\infty$.(1). أ). أ).
	0.75	$f'(x) = \frac{g(x)}{x(x+1)^2} :]0; +\infty[$ من أجل كل x من أجل كل
	2×0.5	. f متزايدة تماما على $0;+\infty$ [، تشكيل جدول تغيرات الدالة f
	0.25	(T): $y = \frac{1}{2}(e+1)x - \frac{1}{2}(e+1) + \ln 2: (T)$ a valid by the distribution (T): $y = \frac{1}{2}(e+1)x - \frac{1}{2}(e+1) + \ln 2: (T)$
	0.25	3). أ) الدالة f على $g(t) = 0$ مستمرة و متزايدة تماما و غيرت من اشارتها اذن المنحني
		$lpha$ يقطع حامل محور الفواصل في نقطة وحيدة A ذات الفاصلة (C_f)
	0.25	0.7 < lpha < 0.8 ب $)$ التحقق ان
	2×0.25	المندسي $\lim_{x\to +\infty} [f(x) - \ln(x+1)] = 0$ و التفسير المهندسي (4). أ
	0.25	(C_f) و (Γ) دراسة الوضع النسبي للمنحنيين (Γ)
	2×0.25	$\left(C_{f} ight)$ ورسم $\left(T ight)$ و $\left(\Gamma ight)$ و ج $\left(\Gamma ight)$

العلامة		عناور الأحادة (المحضوع الثاني)
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0.25	$m \in \left[\frac{1}{2} (1+e) - \ln 2; +\infty \right]$ للمعادلة $f(x) = \frac{1+e}{2} x - m$ للمعادلة (5).
		$\ln x < x+1$:]1; $+\infty$ [من المجال x من المجال]0. نقبل انه من أجل كل
	0.25	$\ln 2 < f(x) < e + \ln(x+1)$:]1;+ ∞ [من المجال x من أجل كل x من المجال (أ
1	0.25	x من المجال $]-1;+\infty$ أن الدالة x من المجال عند الدالة x التحقق أنه من أجل كل
		$x\mapsto \ln (x+1)$ هي دالة أصلية للدالة $x\mapsto (x+1)\ln (x+1)-x$
	0.25	$(e^2 - e) \ln 2 < S < e^3$: نبين أن (6) أ) نبين أن ($\epsilon^2 - e$
		$(e^2 - e) \ln 2 < S < e^3$ ومنه $\int_{0}^{e^2 - 1} \ln 2 dx < S < \int_{0}^{e^2 - 1} e + \ln (x + 1) dx$ الدينا:
		e–1 e –1